Proses Pemilihan Pahat (Cutting Tools) pada Mesin Perkakas

Pengertian Pahat atau perkakas potong (Cutting Tool) adalah alat atau benda yang digunakan untuk memotong material atau benda kerja dalam proses pemesinan.
Beberapa prinsip kerja pahat,

MESIN SEKRAP
Pahat bergerak maju mundur, benda kerja bergerak ke arah melintang. Pemotongan hanya terjadi pada gerak langkah maju, pada saat langkah mundur benda kerja hanya bergeser saja untuk memulai kembali proses pemotongan. Pada proses sekrap ini gerak potong dilakukan oleh pahat dan gerak makan dilakukan oleh benda kerja.

MESIN BUBUT
Poros spindel akan memutar benda kerja melalui piringan pembawa sehingga memutar roda gigi pada poros spindel. Melalui roda gigi penghubung, putaran akan disampaikan ke roda gigi poros ulir. Oleh klem berulir, putaran poros ulir tersebut diubah menjadi gerak translasi pada eretan yang membawa pahat. Akibatnya pada benda kerja akan terjadi sayatan yang berbentuk ulir.

MESIN GURDI
Pahat gurdi mempunyai dua mata potong dan melakukan gerak potong karena diputar poros utama mesin gurdi. Putaran tersebut dapat dipilih dari beberapa tingkatan putaran yang tersedia pada mesin gurdi, atau ditetapkan sekehendak bila sistem transmissi putaran mesin gurdi merupakan sistem berkesinambungan.

MESIN FREIS
Pahat freis termasuk pahat bermata potong jamak dengan jumlah mata potong sama dengan jumlah gigi fries, sesuia dengan jenis pahat yang digunakan ada dua macam cara yaitu mengefreis datar dan mengefreis tegak, ngefreis datar yaitu sumbu putaran pahat freis selubung sejajar permukaan benda kerja, dan ngefeis tegak sumbu putaran pahat freis muka tegak lurus permukaan benda kerja.

MATERIAL PAHAT
Proses pembentukan geram dengan cara pemesinana berlangsung, dengan cara mempertemukan dua jenis material. Untuk menjamin kelangsungan proses ini maka jelas di perlukan material pahat yang lebih unggul daripada material benda kerja. Keuunggulan tersebut dapat di capai karena pahat di buat dengan memperhatikan berbagai segi yaitu :
- Keras : kekerasan yang cukup tinggi melebihi kekerasan benda kerja tidak saja pada temperature ruang melainkan juga pada temperature tinggi pada saat prosespembentukan geram berlangsung.
- Keuletan :yang cukup besar untuk menahan beban kejut yang yerjadi sewaktu peseninan dengan interupsimaupun sewaktu enda kerja memotong yang mengandung partikel atau bagian yang keras (hard spot).
- Tahan beban kejut termal: ketahanan ini diperlukan bila terjadi perubahan temperature yang cukup besar secara berkala atau periodic.
- Sifat adhesi yang rendah : diperlukan untuk mengurangi avinitas benja kerja terhadap pahat, mengurangi laju keausan, serta penurunan gaya pemotongan.
- Daya larut elemen /komponen material pahat yang rendah : di butuhkan demi untuk memperkecil laju keausan akibat mekanisme difusi.
Pada mulanya untuk memotong baja digunakan baja karbon tinggi sebagai bahan perkakas pemotong dimana kecepatan potong pada waktu itu hanya bisa mencapai sekitar 10 m/menit. Berkat kemajuan teknologi, kecepatan potong ini dapat dinaikkan sehingga mencapai sekitar 700 m/menit yaitu dengan menggunakan CBN (Cubic Boron Nitride).
Secara berurutan material-material tersebut akan dibahas mulai dari yang paling “lunak” tetapi “ulet” sampai yang paling “keras” tetapi “getas” yaitu :
1. Baja karbon (high Carbon Steel; Carbon Tool Steels; CTS
2. HSS (High Speed Steels; Tool Steels)
3. Paduan cor nonferro (cast nonferrous alloys; cast carbides)
4. Karbida (cemented carbides; hardmetals)
5. Keramik (ceramics)
6. CBN (cubic boron nitrides), dan
7. Intan (sintered diamonds & natural diamond)
Ø BAJA KARBON
Baja dengan kandungan karbon yang relative tinggi (0,7% - 1,4% C) tanpa unsure lain dengan prosentasi unsure lain yang rendah (2% Mn, W, Cr) mampu mempunyai kekerasan permukaan yang cukup tinggi. Dengan proses laku panas kekerasan yang tinggi ini (500 – 1000 HV)dicapai akan menjadi transformasi martensitik. Karena mertensitik akan melunak pada temperature sekitar 250°C maka hanya karbon ini hanya bisa digunakan pada kecepatan potong yang rendah. Pahat jenis ini hanya dapat digunakan untuk memotong logam yang lunak ataupun kayu.
Ø HSS
Pada tahun 1898 ditemukan jenis baja paduan tinggi dengan unsur paduan krom (Cr) dan tungsten/wolfram (W). melalui proses penuangan (molten metallurgy) kemudian di ikuti pengerolan ataupun penempaan baja ini di bentuk menjadi batang,atau silinder. Pada kondisi lunak baja tersebut dapat diproses secara pemesinan menjadi berbagai bentuk pahat potong. Setelah proses laku panas dilaksanakan, kekerasannya akan cukup tinggi sehingga dapat digunakan untuk kecepataqn potong yang tinggi (sampai dengan 3 kali kecepatan potong untuk pahat CTS yang dikenal pada saat itu sekitar 10 m/menit)
Pengaruh unsur-unsur tersebut pada unsure besi dan karbon adaah sebagai berikut
· Tungsten/Wolfram (W)
· Chromium (Cr)
· Vanadium (V)
· Molybdenum (Mo)
· Cobalt (Co)
HSS juga dikategorikan menurut komposisinya :
- HSS KONVENSIONAL
1. Molibdenum HSS
2. Tungsten HSS
- HSS SPECIAL
1. Cobalt Added HSS
2. High Vanadium HSS
3. High Hardess Co HSS
4. Cast HSS
5. Powdered HSS
6. Coated HSS
Ø PADUAN COR NONFERRO
Sifat-sifat paduan cor nonferro adalah diantara HSS dan Karbida (Cemented Carbide) dan digunakan dalam hal khusus diantara pilihan dimana karbida terlalu rapuh dan HSS menpunyai hot hardness dan wear resistance yang terlalu rendah.
Jenis material ini di bentuk secara tuang menjadi bentuk-bentuk yang tidak terlampau sulit misalnya tool bit (sisipan) yang kemudian diasah menurut geometri yang dibutuhkan.
Paduan nonferro terdiri dari 4 macam eleman utama adalah sebagai berikut :
1. Cobalt : sebagai pelarut bagi elemen-elemen lain.
2. Krom (Cr) : (10% s.d 35% berat) yang membentuk karbida
3. Tungsten/Wolfram (W) : (10% s.d 25% berat) sebagai pembentuk karbida menaikan karbida secara menyeluruh.
4. Karbon : (1% C membentuk jenis yang relaitif lunak sedang 3% C menghasilkan jenis yang keras serta tahan aus.
Ø KARBIDA
Jenis karbida yang “disemen” (Comented Carbides) merupakan bahan pahat yang dibuat dengan cara menyinter (sintering) serbuk karbida (Nitrida,Oksida) dengan bahan pengikat yang umumnya dari Cobalt (Co). dengan cara Carburizing masing-masing bahan dasar (serbuk) Tungsten (Wolfram,W) Tintanium (Ti), Tantalum (Ta) dibuat menjadi karbida yang kemudian digiling (ball mill) dan disaring. Salah satu atau campuaran serbuk karbida tersebut kemudian di campur dengan bahan pengikat (Co) dan dicetak tekan dengan memakai bahan pelumas (lilin). Setelah itu dilakukan presintering (1000°C pemanasan mula untuk menguapkan bahan pelumas) dan kemudian sintering (1600°C) sehingga bentuk keeping (sisipan) sebagai hasil proses cetak tekan ( Cold, atau HIP) akan menyusut menjadi sekitar 80% dari volume semula.
Hot Hardness karbida yang disemen (diikat) ini hanya akan menurun bila terjadi pelunakan elemen pengikat. Semakin besar prosentase pengikat Co maka kekerasannya menurun dan sebaliknya keuletannya membaik.
Ada tiga jenis utama pahat karbida sisipan, yaitu :
1. Karbida Tungsten (WC + Co) yang merupakan jenis pahat karbida untuk memotong besi tuang.
2. Karbida Tungsten Paduan (WC – TiC + Co ; WC – TaC –TiC + Co ; WC – TaC + Co ; WC - Tic – TiN + Co ; TiC + Ni, Mo) merupakan jenis karbida untuk pememotongan baja.
3. Karbida Lapis yang merupakan jenis karbida tungsten yang di lapis (satu atau beberapa lapisan) karbida, nitride, atau oksida lain yang lebih rapuh tetapi hot hardnessnya tinggi.
Ø KERAMIK
Keramik menurut definisi yang sempit adalah material paduan metalik dan nonmetalik. Sedangkan menurut definisi yang luas adalah semua material selain metal atau material organic, yang mencakup juga berbagai jenis karbida, nitride, oksida, boride dan silicon serta karbon.
Keramik dapat di bedakan menjadi dua jenis utama :
1. Keramik tradisional yang merupakan barang pecah belah peralatan rumah tangga
2. Keramik industry digunakan untuk berbagai untuk berbagai keperluan ssebagai komponen dari peralatan, mesin dan perkakas termasuk perkakas potong atau pahat.
Keramik mempunyai karakteristik yang lain daripada metal atau polimer (plastic, karet) karena perbedaan ikatan atom-atomnya, ikatannya dapat berupaikatan kovalen, ionic, gabungan kovalen & ionic, ataupaun sekunder.
Selain ssebagai perkakas potong, beberapa contoh jenis keramik adalah sebagai berikut :
- Kertamik tradisional (dari ubin sampai dengan keramik untuk menambal gigi)
- Gelas (gelas optic, lensa, serat)
- Bahan tahan api (bata pelindung tandur/tungku)
- Keramik oksida (pahat potong, isolator, besi, lempengan untuk mikroelektronik dan kapasitor)
- Karemik oksida paduan
- Karbida, nitride, boride dan silica
- Karbon
Ø CBN (CUBIC BORON NITRIDE)
CBN termasuk jenis keramik. Di buat dengan penkanan panas (HIP, 60kbar, 1500°C) sehingga bentuk grafhit putih nitride boron dengan strukrur atom heksagonal berubah menjadi struktur kubik. Pahat sisipan CBN dapat di buat dengan menyinter serbuk BN tanpa atau dengan material pengikat , TiN atau Co. hot hardness CBN ini sangat tinggi disbanding dengan jenis pahat yang lain.
Ø INTAN
Sintered Diamond merupakan hasil proses sintering serbuk intan tiruan dengan pengikat Co (5%-10%). Hot hardness ssasngat tinggi dan tahan terhadap deformasi plastic. Sifat inidi tentukan oleh besar butir intan serta prosentase dan komposisi material pengikat. Karena intan pada temperature tinggi akan berubah menjadi graphit dan mudah terdifusi dengan atom besi, maka pahat intan tidak dapat di gunakan untuk memotong bahan yang mengadung besi (ferros). Cocok untuk “ultra high precision & mirror finish cutting” bagi benda kerja nonferro (Al Alloys, Cu Alloys, plastics, Rubber).
A. PEMILIHAN MATERIAL PAHAT
Untuk mempermudah pemilihan jenis material pahat, khusus untuk pahat karbida yang di semen (Cemented Carbides, termasuk jenis Coated) maka ISO mengeluarkan satu standar klasifikasi pahat karbida berdarkan jenis pemakainya.
Dalam hal ini pekerjaan pemesinan dikelompokan menjadi tiga kelompok utama, yaitu :
1. Steel Cutting Grade ; untuk pemotongan berbagai jenis baja yang akan menghasilkan geram yang continue (karena relative liat). Diberi kode P (dank ode warna biru)
2. Cast Iron Cutting Grade ; guna melakukan berbagai jenis besi tuang yang menghasilakan geram yssng bterputus-putus (karena relative rapuh). Diberi kode huruf K (dank ode waarna merah)
3. Intermediate Grade ; digunakan untuk proses pemesinan berbagai jenis baja, besi tuang dan nonferrous yang mempunyai sifat ketermesinan yang baik. Diberi kode huruf M dan K.
Setiap pabrik pembuat material pahat biasanya mengeluekan klasifikasi pemakaian seperti ini pada waktu petunjuknya selalu mencantumkan kode spesifik yang mereka anut beserta penyesuaiannya dengan standar ISO 513.
PROSES PEMBUATAN
  • Proses mixing. Merupakan proses pencampuran (mixing) antara serbuk logam dengan bahan aditif.
  • Proses pembentukan (forming). Yaitu pemberian gaya-gaya kompaksi baik pada temperatur ruang (cold compaction) maupun pada temperatur tinggi (hot compaction). Proses cold compactionakan dilanjutkan dengan proses sintering, yaitu proses pemanasan yang dilakukan pada kondisi vakum sehingga diperoleh partikel-partikel yang bergabung dengan kuat seperti gambar berikut :
  • Proses manufaktur
  • Proses finishing

Prinsip Kerja Balon Udara

BAB I
PENDAHULUAN

1.1.  Latar Belakang
Salah satu fenomena alam yang sering ditemukan adalah fenomena fluida. Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air dan zat gas seperti udara dapat mengalir. Menurut Giles (1984:1) “Fluida adalah zat-zat yang mampu mengalir dan yang menyesuaikan diri dengan bentuk wadah dan tempatnya”. Zat padat seperti batu atau besi tidak dapat mengalir sehingga tidak bisa digolongkan dalam  fluida. Air merupakan salah satu contoh zat cair. Masih ada contoh zat cair lainnya seperti minyak pelumas, susu, dan sebagainya. Semua zat cair itu dapat dikelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain.
Fenomena fluida statis (fluida tak bergerak) berkaitan erat dengan tekanan hidraustatis. Dalam fluida statis dipelajari hukum-hukum dasar yang berkaitan dengan konsep tekanan hidraustatis, salah satunya adalah hukum Pascal dan hukum Archimedes. Hukum Pascal diambil dari nama penemunya yaitu Blaise Pascal (1623-1662) yang berasal dari Perancis. Sedangkan hukum Archimedes diambil dari nama penemunya yaitu Archimedes (287-212 SM) yang berasal dari Italia. Hukum-hukum fisika dalam fluida statis sering dimanfaatkan untuk kesejahteraan manusia dalam kehidupannya, salah satunya adalah prinsip hukum Pascal dan prinsip hokum Archimedes. Namun, belum banyak masyarakat yang mengetahui hal tersebut. Oleh karena itu, diperlukan studi yang lebih mendalam mengenai hukum Pascal dan hukum Archimedes serta penerapannya dalam kehidupan.
Balon udara adalah salah teknologi penerbangan pertama yang memanfaatkan Hukum Archimedes, dimana hukum tersebut menyatakan bahwa ”Suatu benda yang terendam sebagian atau seluruhnya dalam  zat cair (fluida) mendapat gaya ke atas yang besarnya sama dengan berat zat cair (fluida) yang dipindahkan oleh benda itu”.
Sebagaimana pada zat cair, pada udara juga terdapat gaya ke atas. Gaya ke atas yang dialami benda sebanding dengan volume udara yang dipindahkan benda itu. Menurut Munson (2003:86) ”arah gaya apung yang merupakan gaya dari fluida terhadap benda berlawanan arah terhadap yang ditunjukkan dalam diagram bebas”.  Suatu benda akan naik ke angkasa jika beratnya kurang dari gaya angkat udara. Balon  udara akan berhenti naik (melayang) jika gaya ke atas oleh udara sama dengan berat total balon udara.
Berdasarkan latar belakang yang telah diuraikan diatas, penulis tertarik untuk membahas ” PRINSIP KERJA BALON UDARA ” dan menjadi judul pada makalah ini.

1.2.Batasan Masalah
Dalam pembahsaan  prinsip kerja balon udara tentunya akan muncul beragam hal yang perlu dibahas, untuk itu diperlukannya pembatasan masalah. Masalah yang dibahas pada makalah ini seputar penerapan ilmu Fisika pada prinsip kerja balon udara

1.3. Rumusan Masalah
Adapun yang menjadi permasalahan didalam  makalah ini adalah bagaimana Prinsip Kerja Balon Udara.

.

1.4. Tujuan

Adapun tujuan dari penulisan makalah ini adalah ingin mengetahui bagaimana prinsip kerja balon udara.
1.5.Manfaat
Adapun manfaat dari penulisan ini adalah :
a.       Penulis, sebagai pelengkap syarat mata kuliah Seminar Fisika
b.      Mahasiswa dan  Umum, sebagai penambah pengetahuan tentang penerapan ilmu fisika pada prinsip kerja balon udara.
 

BAB II
KAJIAN TEORI

2.1.Fluida
Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir. Zat padat seperti batu dan besi tidak dapat mengalir sehingga tidak bisa digolongkan dalam fluida. Air, minyak pelumas, dan susu merupakan contoh zat cair. Semua zat cair itu dapat dikelompokan ke dalam fluida karena sifatnya yang dapat mengalir dari satu tempat ke tempat yang lain. Selain zat cair, zat gas juga termasuk fluida. Zat gas juga dapat mengalir dari satu satu tempat ke tempat lain. Hembusan angin merupakan contoh udara yang berpindah dari satu tempat ke tempat lain.
Fluida merupakan salah satu aspek yang penting dalam kehidupan sehari-hari. Setiap hari manusia menghirupnya, meminumnya, terapung atau tenggelam di dalamnya. Setiap hari pesawat udara terbang melaluinya dan kapal laut mengapung di atasnya. Demikian juga kapal selam dapat mengapung atau melayang di dalamnya. Air yang diminum dan udara yang dihirup juga bersirkulasi di dalam tubuh manusia setiap saat meskipun sering tidak disadari. Menurut Streeter (1996:1) “fluida adalah zat yang berubah bentuk secara kontinu (terus – menerus) bila terkena tegangan geser, betapapun kecilnya tegangan geser itu”.
Fluida dibagi menjadi dua bagian yakni fluida statis (fluida diam) dan fluida dinamis (fluida bergerak). Fluida statis ditinjau ketika fluida yang sedang diam atau berada dalam keadaan setimbang. Fluida dinamis ditinjau ketika fluida ketika sedang dalam keadaan bergerak).  Fluida statis erat kaitannya dengan hidraustatika dan tekanan. Hidraustatika merupakan ilmu yang mempelajari tentang gaya maupun tekanan di dalam zat cair yang diam. Sedangkan tekanan didefinisikan sebagai gaya normal per satuan luas permukaan.
Fluida juga memiliki Berat jenis yang dilambangkan dengan γ (gamma) dan gravitasi jenis, menurut Munson (2003:15) “berat jenis dari sebuah fluida, dilambangkan dengan γ (gamma), didefinisikan sebagai berat fluida persatuan volume”. Berat jenis berhubungan dengan kerapatan melalui persamaan :
            Gravitas jenis sebuah fluida dilambangkan dengan SG. Menurut Munson (2003:15)” gravitasi jenis sebuah fluida didefinisikan sebagai perbandingan kerapatan fluida tersebut dengan kerapatan air pada sebuah temperatur tertentu”.

2.2.Hukum Archimedes
Gaya apung terjadi karena makin dalam zat cair, makin besar tekanan hidrostatiknya. Hal ini menyebabkan tekanan pada bagian bawah benda lebih besar daripada tekanan ada bagian atasnya. Gaya apung muncul karena selisih antar gaya hidrostatik pada permukaan benda atas dan bawah. Fluida melakukan tekanan hidrostatik p1fghpada bagian atas benda. Gaya yang berhubungan dengan tekanan ini adalah F1=p1A =ρfgh1A berarah ke bawah. Dengan cara yang sama, pada permukaan bagian bawah diperoleh F2=p2A =rfghA berarah ke atas.
Resultan kedua gaya ini adalah gaya apung Fa, yakni :
Fa = F2 – F1                          
= ρfgA(h- h1)
= ρfgAh
= ρfgVb = mf g = wf
Berdasarkan persamaan di atas, dikatakan bahwa gaya apung pada benda sama dengan berat fluida yang dipindahkan. Hal ini dikemukakan oleh Archimedes dalam hukumnya yang menyatakan Ketika sebuah benda tercelup seluruhnya atau sebagian di dalam zat cair, zat cair akan memberikan gaya ke atas (gaya apung) pada benda, di mana besarnya gaya ke atas (gaya apung) sama dengan berat zat cair yang dipindahkan.  Menurut Munson (2003:86) ”arah gaya apung yang merupakan gaya dari fluida terhadap benda berlawanan arah terhadap yang ditunjukkan dalam diagram bebas”.  
2.2.1.      Tenggelam
Sebuah benda yang dicelupkan ke dalam zat cair akan tenggelam jika berat benda (w) lebih besar dari gaya ke atas (Fa).
w > Fa
ρb . Vb . g > ρa .Va . g
ρb > ρa
Volume bagian benda yang tenggelam bergantung dari rapat massa zat cair (ρ)

2.2.2.      Melayang
Sebuah benda yang dicelupkan ke dalam zat cair akan melayang jika berat benda (w) sama dengan gaya ke atas (Fa) atu benda tersebut tersebut dalam keadaan setimbang
w = Fa
ρb .Vb . g = ρa . Va . g
ρb = ρa
Pada 2 benda atau lebih yang melayang dalam zat cair akan berlaku :
(FA)tot = Wtot
rc . g (V1+V2+V3+V4+…..)  =  W1 + W2 + W3 + W4 +…..

2.2.3.      Terapung
Sebuah benda yang dicelupkan ke dalam zat cair akan terapung jika berat benda (w) lebih kecil dari gaya ke atas (Fa).
w = Fa
ρb . Vb . g = ρa . Va . g
ρb < ρa
Selisih antara W dan FA disebut gaya naik (Fn).
Fn =  FA - W
Benda terapung tentunya dalam keadaan setimbang, sehingga berlaku :
FA = W . Vb2 . g  =  rb . Vb1 . g
Dengan :
FA = Gaya ke atas yang dialami oleh bagian benda yang tercelup di dalam zat cair.
Vb1 = Volume benda yang berada dipermukaan zat cair.
Vb2 =    Volume benda yang tercelup di dalam zat cair.
Vb = Vb1 + Vb 2
FA’  =  rc . Vb2 . g
Berat (massa) benda terapung = berat (massa) zat cair yang dipindahkan
Dari penjelasan konsep melayang, terapung dan tenggelam yang telah teruraikan diatas kita asumsikan balon udara merupakan benda yang berada didalam fluida (udara) dimana medium luar balon udara adalah udara sekitar balon udara.


2.3.Balon Udara
2.3.1.      Sejarah Penemuan Balon Udara
Pada tahun 1709 di Lisbon, Bartolomeu de Gusmo berhasil membuat balon yang dapat bergerak naik di dalam suatu  ruangan setelah udara di dalam balon dipanaskan. Dia juga membuat  balon  Passarola  yang  berhasil  terbang  dari Benteng  Saint George sejauh sekitar  satu  kilometer. 
Kemudian  tahun  1766,  Joseph  Black  berkeyakinan bahwa balon yang diisi dengan hidrogen akan mampu naik di udara. Balon  udara  panas  adalah  teknologi penerbangan  pertama  oleh  manusia, ditemukan  oleh Montgolfier  bersaudara  di Annonay,  Perancis  pada  1783.  Peristiwa kebakaran  pada  suatu  malam  di  benteng Gibraltar  membuat  Joseph  berpikir  akan kemungkinan pembakaran dari bara api dapat mengangkat sebuah benda. Dia percaya bahwa  ada  asap  gas  khusus  yang menyebabkan hal  itu  terjadi. Dia menyebutnya  gas tersebut adalah "Mongolfier gas".
Lewat hipotesis  itu, dia membangun  ruang kotak berukuran 1 x 1 x 1,3 m dari kayu yang tipis. Lalu, sisi atasnya ditutup dengan kain ringan. Di bagian bawah kotak, dia menyulut  beberapa  kertas.  Ternyata,  hasil  pembakaran  itu  mengangkat  balon perlahan. Hasil percobaan  itu membuat mereka semakin bersemangat. Dua bersaudara itu mengumumkan  pembuatan  proyek  besar.  Yakni,  balon  udara  raksasa  yang menampung beberapa orang. Balon itu berbentuk kain kabung dengan tiga lapisan tipis di dalamnya. Balon tersebut mampu menampung 790 m¸ udara dengan berat 225 kg.

2.3.2.      Tipe Balon Udara
Tipe balon udara dibedakan atas dua macam yaitu:
a.      Balon udara yang diisi dengan udara panas
Pada jenis balon udara ini terdapat suatu pembakar yang berfungsi untuk memanaskan udara dalam balon, sehingga udara dalam balon menjadi lebih ringan dari udara luar sekitarnya.
b.      Balon udara yang diisi dengan gas yang ringan
Gas yang biasanya digunakan adalah gas hidrogen dan gas helium. Gas hidrogen ringan  namun  mudah  terbakar.  Sedangkan  gas  helium  tidak  mudah  terbakar.

2.3.3.      Bagian Pada Balon Udara
Adapun Bagian – Bagian yang terdapat pada balon udara adalah sebagai berikut:
image
Balon udara secara garis besarnya mempunyai tiga bagian utama yaitu envelope, burner, dan basket.
a.       Envelope bentuknya berupa kantong berupa balon tempat udara dipanaskan. Envelope ini biasanya terbuat dari bahan nilon dan diperkuat dengan panel-panel yang di anyam. Karena nilon ini tidak tahan api, maka bagian bawah envelope di lapisi dengan bahan anti api (skirt) seperti PVC.
b.      Burner merupakan alat yang berfungsi untuk memanaskan udara di dalam Envelope. Burner di letakan di atas kepala penumpang dekat ke mulut envelope.
c.       Basket atau keranjang merupakan tempat penumpang. Basket dibuat dari bahan yang ringan dan lentur.

2.4.Prinsip Kerja Balon Udara
Prinsip kerja pada balon yang diisi dengan udara panas dan balon yang diisi dengan gas ringan  pada  dasarnya  sama,  yaitu  dengan  membuat  udara  dalam  balon  lebih  ringan  atau memiliki massa  jenis  yang  lebih  kecil  dari  udara  luar  sekitar  balon  sehingga  balon  udara dapat naik (terbang). Sesuai dengan prinsip Archimedes “Gaya apung yang bekerja pada benda yang dimasukkan dalam  fluida  sama dengan berat fluida yang dipindahkannya”. hal ini sejalan dengan udara sebagai fluida dimana benda dapat terapung pada fluida , jika massa jenisnya lebih kecil dari massa jenis fluida tersebut.
Semua partikel udara di atmosfer ditarik oleh gaya gravitasi ke bawah. Namun tekanan di udara menciptakan gaya ke atas yang bekerja berlawanan dengan gravitasi. Menurut Munson (2003:86) ”arah gaya apung yang merupakan gaya dari fluida terhadap benda berlawanan arah terhadap yang ditunjukkan dalam diagram bebas”. Kumpulan udara membangun  keseimbangan gaya  gravitasi,  dimana  pada  titik  ini  gravitasi  tidak  cukup  kuat untuk menarik ke bawah sejumlah besar partikel. Tingkat  tekanan  ini adalah  tertinggi pada permukaan bumi dimana udara pada tingkat ini dapat menahan beban di udara diatasnya, jika lebih  berat  berarti  lebih  besar  gaya gravitasi  ke  bawah.  Tapi gaya apung ini adalah lemah dibandingkan dengan  gaya  gravitasi, hanya sekuat berat udara  yang dipindahkan oleh  suatu benda.  Jelas, sebagian  besar  benda  padat  apa pun  akan  menjadi  lebih  berat  daripada  udara  yang dipindahkan,  sehingga  gaya  apung  tidak bergerak  sama  sekali.  Gaya  apung  hanya  dapat memindahkan hal-hal yang lebih ringan daripada udara di sekitarnya.
Untuk  membuat  benda  mengapung  di udara,  maka  berat  balon  dan  muatannya  harus lebih  ringan  dari  yang  ada  di  udara  sekitarnya, yaitu  dengan mengisi  balon  dengan  udara  yang tidak  terlalu  padat  daripada  udara  sekitarnya, semisal dengan mengisi balon udara dengan gas hidrogen  atau  gas  helium  yang memiliki massa jenis lebih kecil dari udara (Massa jenis helium = 0,1786 Kg/m3, udara=1,29 kg/m3). Karena udara dalam  balon  memiliki  kurang  massa  per  unit volume  daripada  udara  di  atmosfer  yang membuatnya  lebih  ringan  sehingga  gaya  apung akan mengangkat balon ke atas.
Untuk Balon yang diisi dengan udara panas, prinsip yang digunakan pun sama, jika ingin mengubah  kondisi  udara  di  dalam  balon,  dapat  dikurangi  kepadatannya, sekaligus  menjaga tekanan  udara  agar  tetap  sama  dengan  pemanasan  udara  secara  terus-menerus. Kekuatan tekanan  udara  pada  objek  tergantung  pada  seberapa  sering  berbenturan dengan partikel-partikel udara objek, serta gaya masing-masing tabrakan. Kita melihat bahwa secara keseluruhan kita dapat meningkatkan tekanan dalam dua cara:
1.      Meningkatkan  jumlah  partikel  udara  sehingga  ada  sejumlah  besar  partikel berdampak atas luas permukaan tertentu.
2.      Meningkatkan  kecepatan  partikel  sehingga  partikel  menghantam  daerah lebih sering dan setiap partikel bertabrakan dengan kekuatan yang lebih besar. 
Pada balon udara yang diisi dengan udara panas, agar balon udara dapat terbang maka di dalam envelope dipanaskan dengan burner dengan temperatur sekitar 100oC. Udara panas ini  akan terperangkap  di  dalam  envelope. Karena  udara  panas memiliki massa  jenis  yang lebih kecil daripada udara biasa, maka membuatnya  lebih  ringan  sehingga balon udara pun akan bergerak naik di dorong oleh udara yang bertekanan lebih kuat.
Untuk mendarat, udara didinginkan dengan cara mengecilkan burner. Udara yang mulai mendingin di dalam envelope membuat balon bergerak  turun. Untuk mempercepatnya, pilot akan membuka katup parasut (parachute valve) sehingga udara di dalam envelope lebih cepat dingin. Sedangkan pada  balon  yang berisi  gas  ringan,  terdapat kantung-kantung pasir  yang diikatkan ditepian keranjang. Ketika balon udara ingin terbang tinggi, maka kantung-kantung pasir  tersebut dibuang di udara, namun ketika balon udara  ingin diturunkan maka gas pada balon udara dibuang.
Karena  balon  udara  hanya  bisa  naik  dan  turun  (bergerak  secara  vertikal)  tentu  kita berpikir bagaimana cara balon udara berpindah dari satu lokasi ke lokasi lain (bergerak secara horizontal). Pilot memanfaatkan  hembusan  angin  untuk  bergerak  secara  horizontal. Karena angin bertiup berbeda arahnya pada  setiap ketinggian  tertentu. Perbedaan arah  tiupan angin inilah  yang dimanfaatkan  oleh  pilot  untuk mengendalikan  balon  udara  dari  satu  lokasi  ke lokasi yang diinginkan .



BAB III
PEMBAHASAN

3.1.  Gaya yang berkerja pada balon udara
Adapun gaya – gaya yang bekerja pada balon udara adalah sebagai berikut:

image 
a.       Gaya Apung
Balon udara akan melayang diudara apabila besarnya gaya apung sama dengan gaya berat balon udara tersebut. Secara sistematis dapat ditulis :
Fb=Wgas + WBeban
Fb=(mgas+mbeban) . g
ρudara . V . g = (ρgas .V+mbeban).g
ρudara . V  = ρgas .V+mbeban

b.      Balon Naik jika
Dalam proses menaikkan balon udara, udara di dalam envelope dipanaskan dengan burner dengan temperatur sekitar 100oC sehingga menyebabkan masa jenis balon udara lebih kecil daripada massa jenis udara disekitar balon, sehingga menyebabkan balon  tersebut terangkat. Secara sistematis dapat ditulis
ρudara . V > ρgas .V+mbeban

c.       Balon Turun
Untuk mendarat, udara didinginkan dengan cara mengecilkan burner. Udara yang mulai mendingin di dalam envelope membuat balon bergerak  turun. Hal ini dikarenakan balon lebih besar dari pada masa udara disekitar balon tersebut (udara luar). Secara sistematis dapat ditulis:
ρudara . V < ρgas .V+mbeban

 

BAB IV
PENUTUP

4.1.Kesimpulan 
Dari yang telah teruraikan dari bab sebelumnya maka dapat ditarik kesimpulan sebagai berikut:
Ø  Balon udara merupakan teknologi terbang pertama  yang menerapkan  konsep fluida statis dengan menggunakan prinsip archimedes, dimana “Gaya apung yang bekerja pada benda yang dimasukkan dalam  fluida  sama dengan berat fluida yang dipindahkannya”.
a.       Gaya Apung (Balon Melayang)
Balon udara akan melayang diudara apabila besarnya gaya apung sama dengan gaya berat balon udara tersebut. Secara sistematis dapat ditulis :
ρudara . V  = ρgas .V+mbeban
b.      Balon Naik
Balon udara naik apabila massa jenis balon lebih kecil daripada masa jenis udara diluar balon secara sistematis dapat ditulis
 ρudara . V > ρgas .V+mbeban
c.       Balon Turun
Balon Udara turun apabila massa jenis balon lebih besar daripada masa jenis udara diluar balon secara sistematis dapat ditulis
ρudara . V < ρgas .V+mbeban



4.2.  Saran
Adapun saran dari penulis pada penyusunan koloqium ini adalah semoga dapat menambah pengetahuan tentang bagaimana penerapan ilmu fisika pada prinsip kerja balon udara dan diharapkan adanya penyusunan koloqium lainnya dengan menerapkan ilmu fisika didalamnya.

new header 2 renviletieft





Translate 40 bahasa / Dictionary 40 Languages (Kamus)

Download Aplikasi / Software Kamera HP Scanner / Tembus Pandang

1.Software kamera tembus pandang buat iphone-NOMAO


Jika anda ingin memliki aplikasi atau software NOMAO ini bisa dilihat dulu sreensrotnya di bawah ini :

Foto





Video



Untuk link downloadnya bisa anda cari dibawah ini :

DOWNLOAD 




Size 1.7 MB







 Atau

Size 5.35MB
Jika Aplikasi Nomao Versi 1.2 diatas masi tidak bisa di jalankan pada Iphone anda, coba download link dibawah ini tersedia untuk IOS 4.04





2.Software kamera tembus pandang buat hp java

XrayScanner



Demikian ulasan saya tentang aplikasi atau software kamera tembus pandang terimakasih atas kunjungannya
 
Copyright © 2012 - 2015 Renviletieft Blog - All Rights Reserved
Template Craeted by : RenvileTieft Blog
Proudly Powered by Blogger