Proses Rolling


Berbagai metode telah digunakan untuk melengkungkan atau membentuk kontur pada bagian yang lurus .bagian yang membentuk silinder dan kerucut dibuat dengan menggunakan pengerol melengkung. Pelengkungan tiga roll tidak menjamin terhindarnya penekukan pada lembaran yang tipis. Seringkali ditambahkan roll keempat pada bagian keluaran untuk memberikan pengeluaran tambahan terhadap kelengkungan. Pada pembebanan tiga titik, momen



lengkung maksimum terletak ditengah-tengah panjang bentangan. Hal ini dapat memberikan regangan lokal, sehingga batas pembentukan terjadi di tengah-tengah, sebelum bahan dilengkungkan sebagaimana mestinya. Deformasi yang lebih seragam diperoleh dengan memakai peralatan jenis “wiper”. Dalam bentuknya yang paling sederhana, peralatan ini terdiri atas lembaran yang di klem salah satu ujungnya pada blok pembentuk, kontur terbentuk oleh pukulan palu yang berurutan, dimulai di dekat klem dan bergerak menuju ujung yang bebas.


Mesin Diesel dan Mesin Bensin (Termodinamika)


Pendahuluan


Mesin yang saat ini banyak dipakai adalah mesin kalor atau biasa disebut motor bakar. Motor bakar memanfaatkan energi panas untuk menghasilkan energi mekanik. Energi panas tersebut diperoleh dari proses pembakaran yang terjadi baik di dalam silinder maupun di luar silinder. Jika pembakaran berlangsung di dalam silinder maka disebut Internal Combustion Engine (mesin pembakaran dalam). Sedangkan mesin dengan proses pembakarannya di luar silinder disebut External Combustion engine (mesin pembakaran luar).

Sementara kendaraan roda dua atau roda empat yang banyak ditemui di jalan umumnya menggunakan Internal combustion engine. Internal combustion engine sendiri terbagi ke dalam beberapa jenis seperti motor bensin, motor diesel, motor gas, turbin gas, dan propulsi pancar gas.

Mesin bensin adalah mesin yang bekerja dengan cara memasukan panas dari percikan bunga api listrik dari busi pada campuran udara dan bahan bakar yang dikompresikan. Berbeda sekali dengan kerja mesin diesel. Mesin diesel adalah mesin yang bekerja dengan cara menginjeksikan bahan bakar pada udara yang telah dikompresikan sehingga memiliki tekanan dan temperature tinggi. Selain itu mesin diesel pun bekerja dalam kompresi yang cukup tinggi, yaitu mencapai 1 : 18. Bandingkan dengan mesin bensin yang hanya mencapai 1 : 8. Perbedaan – perbedaan ini sangat signifikan. Akibatnya perawatan dan penanganannya berbeda sekali. Kadang-kadang orang dengan salah kaprah menyamakan begitu saja perawatan diantara kedua jenis mesin tersebut.



Mesin ini ditemukan pada tahun 1892 oleh Rudolf Diesel, yang menerima paten pada 23 Februari 1893. Dia mempertunjukkannya pada Exposition Universelle (Pameran Dunia) tahun 1900 dengan menggunakan minyak kacang. Kemudian diperbaiki dan disempurnakan oleh Charles F. Kettering. (wikipedia)

Cara Kerja Mesin Diesel

Pada prinsipnya kerja mesin diesel memiliki empat langkah piston (4-stroke atau di pasaran dikenal dengan 4-tak) sepeti halnya mesin bensin. Yaitu udara murni dihisap ke dalam silinder melalui saluran masuk (intake manifold) lalu dikompresikan oleh piston. Sehingga tekanan dan termperaturnya naik. Pada akhir langkah kompresi bahan bakar mesin diesel di-injeksikan ke dalam silinder melalui nozzle dalam tekanan tinggi. Proses ini mengakibatkan terjadinya penyalaan dalam ruang bakar dan menghasilkan ledakan yang akan mendorong piston. Gerak translasi piston yang dihasilkan oleh ledakan tadi adalah sebuah usaha/gaya yang akan diteruskan ke poros engkol untuk dirubah menjadi gerak rotasi. Gerak rotasi poros engkol yang terhubung dengan fly wheel mengakibatkan piston terdorong kembali untuk menekan gas sisa pembakaran ke luar silinder melalui saluran buang (exhaust manifold).

Mesin diesel sulit beroperasi pada saat silinder dingin. Untuk membantu mesin melakukan gerak mula pada saat silinder dingin beberapa mesin menggunakan busi pemanas (glow plug) untuk memanaskan silinder sebelum penyalaan mesin. Lainnya menggunakan pemanas “resistive grid” dalam “intake manifold” untuk menghangatkan udara masuk sampai mesin mencapai suhu operasi. Setelah mesin beroperasi pembakaran bahan bakar dalam silinder dengan efektif memanaskan mesin. Busi pemanas ini tidak digunakan pada mesin diesel jenis direct injenction.

Komponen-komponen yang ada dan bekerja dalam mesin diproduksi dengan dengan sangat teliti. Sementara komponen-komponen tesebut bekerja dalam mesin dengan temperatur kerja mesin yang mencapai lebih dari 800 C dan beban kerja dalam ruang silinder yang mencapai temperature 3000 sampai 5000 C pada tekanan 2492 kPa (30 Kgf/cm2). (Training Manual, M-STEP 2: Gasoline Engine, Kramayudha Tiga Berlian)

Teknologi internnal combustion chamber, seperti yang ditulis pada harian republika edisi 16 juli 1993, sebagai teknologi lawas yang dianggap para ilmuwan sebagai lompatan terbesar dalam teknologi otomotif yang sampai saat ini belum tergantikan memerlukan perhatian dan perlakuan yang baik.

Beban kompresi yang tinggi, konstruksi yang besar, dan momen puntir yang dihasilkan cukup besar, menghasilkan pula rendemen panas yang tinggi. Maka akan menjadi pertanda buruk jika banyak energi panas yang terbuang ketika mesin bekerja. Perlu Untuk mengatasinya adalah dengan mengoptimalkan kemampuan komponen-komponen pendukung yang bekerja dalam mesin agar tetap dalam kondisi prima sesuai dengan spesifikasi. Sehingga tidak banyak energi panas yang terbuang percuma.



Keunggulan dan kelemahan

Antara mesin diesel dan mesin bensin memiliki keunggulan dan kelemahan masing-masing. Salah satu yang biasanya dirasakan adalah mesin bensin lebih responsif dibandingkan diesel. Sementara mesin diesel memiliki output momen (torsi) yang lebih baik daripada mesin bensin pada putaran yang sama. Dilihat dari konstruksinya, mesin diesel lebih besar dan berat daripada mesin bensin pada spesifikasi tenaga yang sama.

Air fuel Ratio (AFR) atau rasio udara dan bahan bakar mesin diesel berlebih dibandingkan mesin bensin. AFR mesin diesel mencapai 1 : 16 sampai dengan 160. Artinya satu bagian bahan bakar membutuhkan 16 s/d 160 bagian udara untuk melayani proses pembakaran di dalam silinder. Hal lain yang berhubungan erat dengan AFR adalah emisi gas buang yang dihasilkan. Dilihat dari sisi emisi gas buang, gas NOx yang dihasilkan dari pembakaran mesin diesel mengandung kelebihan oksigen karena mesin diesel dioperasikan dengan AFR yang lebih kurus dari AFR secara teoritis yang mencapai 1 : 14,7. Normalnya konsentrasi oksigen di gas buang adalah 1 – 2 %. Tingginya konsentrasi oksigen di gas buang akan menyebabkan tingginya konsentrasi senyawa NOx. Senyawa NOx ini sangat tidak stabil dan bila terlepas ke udara bebas, akan berikatan dengan oksigen untuk membentuk Nitrat oksida (NO2). Inilah yang amat berbahaya karena senyawa ini amat beracun dan bila terkena air akan membentuk asam nitrat. Keuntungan lain dari AFR yang kurus pada mesin diesel adalah rendahnya kandungan Karbon monoksida (CO) dan Hidrokarbon (HC) pada gas buang.

Konstruksi mesin diesel yang lebih berat dan besar dibandingkan mesin bensin, selain memakan tempat pada kompartement mesin, juga mengakibatkan putaran maksimum yang rendah. Yaitu hanya mencapai kurang lebih 5000 Rpm. Dan berimplikasi pada out put maksimum yang rendah pula.

Meskipun tekanan maksimumnya lebih tinggi dari mesin bensin, yaitu bisa mencapai 5,8 sampai dengan 8,8 kpa (60 – 90 kgf/cm2), tidak mampu mendongkrak out put maksimum dari mesin diesel. Karena tingginya tekanan tersebut dikarenakan perbandingan kompresi yang tinggi. Perbandingan kompresi mesin diesel bisa mencapai 1 : 15 s/d 23. nilai perbandingan kompresi diperoleh dari jumlah volume langkah ditambah volume kompresi dibandingkan dengan volume kompresi. Tingginya perbandingan kompresi tersebut dalam mesin diesel sangat dibutuhkan untuk memperoleh tekanan dan temperatur yang tinggi dari udara yang masuk ke dalam silinder. Sementara di mesin bensin tidak diperlukan kompresi setinggi itu untuk menghasilkan pembakaran. Karena pembakaranya dilakukan oleh percikan api dari busi.

Sebelumnya banyak orang beranggapan bahwa mesin diesel itu kotor, kasar dan lambat. Maka, mesin diesel diidentikan dengan truk, kendaraan berat, traktor dan yang lainnya. Tapi, seiring dengan perkembangan teknologi otomotif anggapan harus dihilangkan. Penyempurnaan pembakaraan dan teknologi catalyc converter berhasil membersihkan gas buang. Audi R40 telah membuktikan ketahanan mesin diesel dengan menjuarai lomba ketahanan mesin 24 jam di Le Mans 2006. Dan yang menarik dari mesn diesel adalah mesin diesel dikenal hemat dalam hal konsumsi bahan bakar dan memiliki torsi yang besar. Menurut pabrikan mobil PSA, teknologi diesel terbaru bisa mencapai efesiensi bahan bakar sebesar 20 % dibandingkan teknologi tahun 1980-an dengan peningkatan tenaga dua kali lipat. Kendaraan dengan mesin diesel terbaru bisa mencapai jarak 100 km hanya dengan 3 liter bahan bakar.

Pada masa mendatang mesin diesel akan semakin efesien dengan dikembangkannya bahan bakar biodiesel. Ini berarti akan membantu mengurangi ketergantungan kepada bahan bakar fosil yang cadangannya terbatas dan tidak bisa tergantikan. Peralihan ke mesin diesel akan membantu pemeliharaan lingkungan dan penghematan devisa yang pada tahun 2007 ditargetkan pemerintah sebesar 25 miliar rupiah pertahun melalui penggunaan biodiesel.
Sumber : Training Manual, M-STEP 2. Kramayudha Tiga Berlian.

Laser Beam Machining / LBM (Proses Produksi)



Laser singkatan dari “light amplification by stimulated emission of radiation”. Merupakan berkas cahaya monokromatis yang sangat kuat serta mempunyai pemencaran berkas sangat sedikit. LBM merupakan proses termolistrik, dicapai dengan menguapkan bahan dan beberapa bahan dilepaskan dalam kondisi cair pada kecepatan tinggi. Suatu berkas yang lemah diperkuat dalam batang ruby, karena ion khromium tertentu dalam ruby memancarkan foton pada saat berkas cahaya memantul ke belakang dan ke depan di dalamnya. Energi yang terlepas dari batang ruby mempercepat intensitas berkas cahaya meninggalkan batang dan difokuskan ke benda kerja. Laser ruby paling efisien bila dipertahankan pada kondisi sangat dingin dan ini bisa dilakukan oleh nitrogen cair pada -196o C. Sorotan cahaya yang paling baik beroperasi pada panas, ini dapat dilakukan dengan mensirkulasi udara panas di sekelilingnya. Ruangan vakum diantara ruby dan sorotan berfungsi sebagai isolator sehingga dapat mempertahankan suhu keduanya. Lampu beroperasi dari satu pencahayaan tiap 3 menit sampai 12 pencahayaan tiap menit. Energi laser dikenakan ke benda kerja selama kurang dari 0.002 detik.
Jenis laser yang ada adalah laser ruby, laser kondisi gas (menggunakan gas CO2), dan utnuk mengurangi logam saat membalans mesin putaran kecepatan tinggi.
Laser dapat menembus bahan yang transparan dan menguapkan hampir segala jenis bahan. Daerah yang dipengaruhi oleh panas (HAZ) sempit, digunakan untuk memesin bahan keras bukan logam. Keterbatasan dari proses LBM adalah mahalnya peralatan, efisiensi operasi rendah, sulitnya mengendalikan ketelitian, penggunaannya terutama untuk suku cadang yang kecil.


Salah satu penggunaan penting laser adalah untuk pengelasan. Laser gas CO2 digunakan untuk memotong, tetapi terbatas untuk ketebalan sampai 10mm. Laser ruby pulsa juga berhasil digunakan untuk mengelas bahan yang lebih tebal. Penggunaan lain untuk pemotongan logam, di mana hal ini sering mnggunakan laser jenis CO2. laser ini beroperasi secara kontinyu, dapat memotong hampir semua bahan kalau berkas difokuskan dan jet dari ga digunakan untuk memutuskan berkasnya.

Plasma Arc Machining (PAM)

Contoh penggunaan berikut untuk proses pemotongan logam. Gas dipanaskan oleh busur wolfram hingga suhu yang sangat tinggi, gas akan terionisasi dan menjadi penghantar listrik. Gas dalam kondisi ini disebut plasma. Api dirancang sehingga gas mengalir ke busur melalui lubang halus. Akibatnya suhu plasma naik dan konsentrasi energi pada daerah benda kerja yang kecil menyebabkan logam mencair dengan cepat. Ketika aliran gas meninggalkan nosel, gas berkembang cepat membawa serta logam cair, sehingga proses pemotongan berjalan terus.
Suhu yang bisa dicapai mendekati 33.000°C, kira-kira 10 kali suhu yang dihsilkan oleh reaksi oksigen dan asitelin.



Api yang dihasilkan plasma ada dua :
1. api plasma transfer, dan
2. api plasma yang tidak ditransfer.
Api plasma yang ditransfer digunakan untuk memotong, benda kerja menjadi anoda, busur terbentuk dalam pancar gas sampai benda kerja, intensitas transfer panas dan efisiensi ditingkatkan hingga cocok untuk pemotongan logam. Api pemotong pada gambar A dapat digunakan untuk mengelas dan memotong berbagai logam. Untuk memotong digunakan rapat arus yang lebih besar serta digunakan campuran gas argon dan hidrogen. Ketebalan pemotongan terbatas sampai 13 mm. Untuk pemotongan cepat digunakan busur gambar B, api terbatas pada celah yang sempit, ujung nyala menghasilkan busur kecepatan tinggi sehingga mudah mencairkan logam besi dan bukan besi. Ketebalan logam yang dipotong mencapai 100mm.
Gas yang digunakan pada api plasma adalah argon, hidrogen dan nitrogen, kombinasi argon dan nitrogen mmberikan hasil yang terbaik. Untuk operasi pemotongan digunakan campuran 80% argon dan 20% hydrogen dengan arus sekitar 400 ampere, untuk arus yang lebih tinggi digunakan campuran 65 : 35. nitrogen hanya digunakan untuk memotong baja tahan karat, karena uapnya beracun diperlukan sistem buang. Busur plasma bisa digunakan dengan operasi tangan maupun mesin, busur ini dimanfaatkan untuk pemotongan aluminium, baja tahan karat, tembaga, magnesium.




Sistem Pengaturan Pengkondisian Udara dalam Ruangan


Pendahuluan


Kapasitas instalasi pengkondisian udara direncanakan pada kondisi beban puncak. Untuk mempertahankan kondisi ruangan pada tingkat keadaan yang diijinkan, perlu adanya system pengaturan. Selain itu juga pengaturan berfungsi untuk menjalankan peralatan secara efisien, dan melindungi peralatan dari kerusakan.
Dalam keadaan normal system pengkondisian udara bekerja pada kapasitas maksimum, apabila tanpa system pengaturan. Tetapi sebagian besar waktu operasi, instalasi bekerja pada beban parsial yaitu dibawah keadaan maksimum. Oleh karena itu untuk mengatur dan menyesuaikan proses pendinginan, agar system beroperasi sesuai dengan yang diinginkan perlu adanya system pengaturan. System pengaturan instalasi pengkondisian udara meliputi pengaturan sisi udara dan pengaturan sisi air sejuk (untuk AC Sentral). Tetapi yang kita bahas disini adalah pengaturan sisi udara untuk AC Split.

Pengaturan Sisi Udara

Pengaturan sisis udara dapat dilakukan dengan dua metode yaitu:
1. Pengaturan Laju volume udara konstan (Constan Air Volume/CAV)
2. Pengaturan laju volume udara variabel (Variabel Air Volume/VAV)


Pengaturan Volume Udara konstan (CAV)

Pada system pengaturan ini udara suplai yang mengalir keruangan dipertahankan konstan, tetapi diperlukan adanya temperature udara yang bervariasi. Tinggi rendahnya udara suplai tesebut harus sesuai dengan besar kecilnya beban parsial. Yang diatur disini adalah laju aliran massa refrigerant yang masuk kekoil pendingin. Gambar 1 memperlihatkan skema pengaturan ini.







Gambar: 1 sebuah pendingin CAV

Pengaturan untuk mendapatkan kondisi yang sesuai dilakukan dengan cara sebagai berikut:
1. Pengaturan dengan pemanas ulang (reheat control).
Pengaturan dengan cara ini adalah dengan menjaga temperature bola kering udara ruangan dengan menggganti setiap pengurangan beban sensible dengan beban artificial. Bila beban laten internal dan beban laten udara luar berkurang, pengaturan dengan cara ini akan membuat kelembaban relative ruang ingin dijaga konstan, diperlukan humidier. Gambar 2 memperlihatkan skema pengaturan.




Gambar: 2 pengaturan dengan Pemanas Ulang


2. Pengaturan dengan by passs (By pass Control)
Pengaturan dengan cara ini dilakukan dengan melakukan bypass aliran udara terhadap koil. Udara yang dibypass adalah udara balik saja, atau campuran antara udarabalik dengan udara luar, sehinggga dengan memodulasikan jumlah laju aliran udara yang melewati koli, yaaitu dengan cara membypass, maka temperature bola kering udara ruangan dpat dijaga. Gambar 3 Memeperlihatkan skema pengaturan ini.




Gambar: 3 Bypass udara balik

Pengaturan Laju Volume Udara Variabel (VAV)

Pengaturan sisi udara dengan metoda ini, adalah memvariasikan laju volume udara suplai pada saat terjadi beban parsial, dengan keadaan temperature udara suplai reklatif konstan. Dengan cara ini pada dasarnya akan menghasilkan kondisi ruang yang sama dengan pengaturan bypass udara balik saja. Yang diatur disini adalah laju aliran udaranya. Gambar 4 Memperlihatkan skema pengaturan ini.





Gambar: 4 Sebuah Pendingin VAV

Pemilihan system Pengaturan

Dalam peranacngan ini sistem pengaturan yang dipilih untuk sisi udara adalah,sistem pengaturan laju volume udara konstan (Constan Air Volume). Dimana udara suplai yang mengalir keruangan dipertahankan konstan. Tetapi diperlukan adanya temperature udara yang bervariasi, tinggi rendahnya udara suplai tersebut harus sesuai dengan besar kecilnya beban parsial.

Mesin pendingin tipe terpisah (split System) ini, memang sudah dirancang untuk sistem pengaturan laju volume udara konstan (Constan Air Volume). Karena mesin pendingin ini termasuk mesin dengan kapasitas sedang. Mesin pendingin yang kita rancang ini dilengkapi dengan saluran udara (duct), sehingga distribusi udara dapat diatur sesuai dengan keinginan perencana.

Pemilihan Bahan dan Proses Dinding Silinder Mesin Diesel




a. Pendahuluan

Silinder adalah bagian dari ruang bakar yang digunakan untuk proses pembakaran campuran bahan bakar dan udara. Pada saat kompresi dan pembakaran akan menghasilkan tekanan gas yang tinggi, maka diusahakan tidak terjadi kebocoran pada ruang bakar tersebut, sehingga dapat menghasilkan tenaga gerak mesin. Bila mesin digunakan dalam jangka waktu yang cukup lama, dinding silinder sedikit demi sedikit akan mengalami keausan. Hal ini akan menimbulkan penambahan kelonggaran antara torak dan silinder, serta menyebabkan kebocoran gas, tekanan kompresi berkurang dan tenaga yang dihasilkan juga berkurang. Agar keausan silinder tidak terlalu banyak maka diupayakan bahan yang digunakan tahanan aus dan juga tahan terhadap panas.



b. Dasar Teori

Proses pembakaran pada motor diesel terjadi akibat pemampatan udara di dalam silinder sehingga menaikkan suhu udara tekan dalam ruang bakar, kemudian disemprotkan bahan bakar solar ke dalam silinder yang telah berisi udara-panas. Setelah bahan bakar bersentuhan dengan udara-panas maka terjadilah proses pembakaran. Proses pembakaran bahan bakar ini menimbulkan temperatur dan tekanan di dalam silinder menjadi sangat tinggi dan gas pembakaran mampu mendorong piston dengan tenaga yang besar sehingga terjadi gesekan pada dinding silinder oleh cincin pada piston. Pemasangan cincin piston pada silinder harus selalu menekan dinding silinder dengan gaya pegasnya. Hal ini menambah besarnya gaya gesek cincin terhadap dinding silinder. Peningkatan temperatur yang terjadi pada ruang bakar meyebabkan terjadinya pemuaian material cincin-piston dan lebih lanjut mengadakan tekanan ke dinding silinder. Hal ini juga menyumbang besarnya gaya gesek terhadap dinding silinder. Kekasaran permukaan bidang kontak antara dinding piston dengan silinder dan dengan adanya gaya gesek yang besar, menyebabkan keauasan pada dinding silinder semakin mudah. Material silinder memiliki sifat getas, lunak dan tidak tahan panas akan mudah keausan dinding silinder. Pemilihan bahan silinder sangat diawasi karena silinder memegang peranan penting lancarnya gerakan piston.





2.1 Posisi Keausan

Keausan yang paling banyak pada dinding silinder oleh cincin torak terjadi di antaranya langkah torak atau ½ langkah torak. Karena besar sudut antara connecting rod dan sumbu silinder juga mempengaruhi. Apabila sudut yang dibentuk oleh connecting rod dengan sumbu silinder kecil maka keausan yang terjadi pada dinding silinder akan kecil, apabila sudut yang dibentuk besar maka keausan pada dinding silinder besar pula.



2.2 Pemilihan Bahan Silinder Linear

Keausan silinder liner diperparah oleh pemakaian material bermutu rendah yaitu jumlah komposisi material tersebut yang memiliki ketahanan aus rendah sangat
besar. Dalam penggunaan sebaiknya dipakai bahan besi cor kelabu dimana mengandung unsur besi (Fe = 92,95 %), silikon (Si = 2,339 %), karbon (C = 3,108 %) dan mangan (Mn = 0,938 %) yang merupakan unsur utama pada besi tuang kelabu.

Penambahan silikon pada besi-cor akan memperoleh sifat encer (fluidity) dan sedikit getas. Mangan yang dipadukan akan menambahkan sifat kekuatan pada
besi-cor. Besi-cor ini memiliki kelebihan agak getas, kekuatan-tarik rendah, kekuatan tekan tinggi dan mempunyai mampu cor sangat baik serta murah dan paling banyak dipergunakan untuk benda-benda coran. Apabila bahan silinder terbuat dari bahan dibawah persyaratan yang ditentukan untuk pemakaian ruang bakar, maka kemungkinan cepat aus besar sekali.





2.3 Proses pembuatan dan finishing










Turbin Angin (Termodinamika)



Turbin angin adalah kincir angin yang digunakan untuk membangkitkan tenaga listrik. Turbin angin ini pada awalnya dibuat untuk mengakomodasi kebutuhan para petani dalam melakukan penggilingan padi, keperluan irigasi, dll. Turbin angin terdahulu banyak dibangun di Denmark, Belanda, dan negara-negara Eropa lainnya dan lebih dikenal dengan Windmill.

Kini turbin angin lebih banyak digunakan untuk mengakomodasi kebutuhan listrik masyarakat, dengan menggunakan prinsip konversi energi dan menggunakan sumber daya alam yang dapat diperbaharui yaitu angin. Walaupun sampai saat ini pembangunan turbin angin masih belum dapat menyaingi pembangkit listrik konvensonal(Co: PLTD,PLTU,dll), turbin angin masih lebih dikembangkan oleh para ilmuwan karena dalam waktu dekat manusia akan dihadapkan dengan masalah kekurangan sumber daya alam tak terbaharui(Co : batubara, minyak bumi) sebagai bahan dasar untuk membangkitkan listrik.

Perhitungan daya yang dapat dihasilkan oleh sebuah turbin angin dengan diameter kipas r adalah :

turbin

dimana ρ adalah kerapatan angin pada waktu tertentu dan v adalah kecepatan angin pada waktu tertentu. Umumnya daya efektif yang dapat dipanen oleh sebuah turbin angin hanya sebesar 20%-30%. Jadi rumus diatas dapat dikalikan dengan 0,2 atau 0,3 untuk mendapatkan hasil yang cukup eksak.



Jenis turbin angin ada 2, yaitu :
1. Turbin angin sumbu horizontal(Darrieus wind turbine) 
2. Turbin angin sumbu tegak 

Prinsip dasar kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir, lalu putaran kincir digunakan untuk memutar generator, yang akhirnya akan menghasilkan listrik.
Sebenarnya prosesnya tidak semudah itu, karena terdapat berbagai macam sub-sistem yang dapat meningkatkan safety dan efisiensi dari turbin angin, yaitu :

1. Gearbox
Alat ini berfungsi untuk mengubah putaran rendah pada kincir menjadi putaran tinggi. Biasanya Gearbox yang digunakan sekitar 1:60

2. Brake system
Digunakan untuk menjaga putaran pada poros setelah gearbox agar bekerja pada titik aman saat terdapat angin yang besar. Alat ini perlu dipasang karena generator memiliki titik kerja aman dalam pengoperasiannya. Generator ini akan menghasilkan energi listrik maksimal pada saat bekerja pada titik kerja yang telah ditentukan. Kehadiran angin diluar diguaan akan menyebabkan putaran yang cukup cepat pada poros generator, sehingga jika tidak diatasi maka putaran ini dapat merusak generator. Dampak dari kerusakan akibat putaran berlebih diantaranya : overheat, rotor breakdown, kawat pada generator putus, karena tidak dapat menahan arus yang cukup besar.

3. Generator

Ini adalah salah satu komponen terpenting dalam pembuatan sistem turbin angin. Generator ini dapat mengubah energi gerak menjadi energi listrik. Prinsip kerjanya dapat dipelajari dengan menggunakan teori medan elektromagnetik. Singkatnya, (mengacu pada salah satu cara kerja generator) poros pada generator dipasang dengan material ferromagnetik permanen. Setelah itu disekeliling poros terdapat stator yang bentuk fisisnya adalah kumparan-kumparan kawat yang membentuk loop. Ketika poros generator mulai berputar maka akan terjadi perubahan fluks pada stator yang akhirnya karena terjadi perubahan fluks ini akan dihasilkan tegangan dan arus listrik tertentu. Tegangan dan arus listrik yang dihasilkan ini disalurkan melalui kabel jaringan listrik untuk akhirnya digunakan oleh masyarakat. Tegangan dan arus listrik yang dihasilkan oleh generator ini berupa AC(alternating current) yang memiliki bentuk gelombang kurang lebih sinusoidal.

4. Penyimpan energy

Karena keterbatasan ketersediaan akan energi angin (tidak sepanjang hari angin akan selalu tersedia) maka ketersediaan listrik pun tidak menentu. Oleh karena itu digunakan alat penyimpan energi yang berfungsi sebagai back-up energi listrik. Ketika beban penggunaan daya listrik masyarakat meningkat atau ketika kecepatan angin suatu daerah sedang menurun, maka kebutuhan permintaan akan daya listrik tidak dapat terpenuhi. Oleh karena itu kita perlu menyimpan sebagian energi yang dihasilkan ketika terjadi kelebihan daya pada saat turbin angin berputar kencang atau saat penggunaan daya pada masyarakat menurun. Penyimpanan energi ini diakomodasi dengan menggunakan alat penyimpan energi. Contoh sederhana yang dapat dijadikan referensi sebagai alat penyimpan energi listrik adalah aki mobil. Aki mobil memiliki kapasitas penyimpanan energi yang cukup besar. Aki 12 volt, 65 Ah dapat dipakai untuk mencatu rumah tangga (kurang lebih) selama 0.5 jam pada daya 780 watt.

Kendala dalam menggunakan alat ini adalah alat ini memerlukan catu daya DC(Direct Current) untuk meng-charge/mengisi energi, sedangkan dari generator dihasilkan catu daya AC(Alternating Current). Oleh karena itu diperlukan rectifier-inverter untuk mengakomodasi keperluan ini. Rectifier-inverter akan dijelaskan berikut.

5. Rectifier-inverter

Rectifier berarti penyearah. Rectifier dapat menyearahkan gelombang sinusodal(AC) yang dihasilkan oleh generator menjadi gelombang DC. Inverter berarti pembalik. Ketika dibutuhkan daya dari penyimpan energi(aki/lainnya) maka catu yang dihasilkan oleh aki akan berbentuk gelombang DC. Karena kebanyakan kebutuhan rumah tangga menggunakan catu daya AC , maka diperlukan inverter untuk mengubah gelombang DC yang dikeluarkan oleh aki menjadi gelombang AC, agar dapat digunakan oleh rumah tangga.

Sistem Perpipaan (Mekanika Fluida)

Sistem perpipaan dapat ditemukan hampir pada semua jenis industri, dari sistem pipa tunggal yang sederhana sampai sistem pipa bercabang yang sangat kompleks. Contoh sistem perpipaan adalah, sistem distribusi air minum pada gedung atau kota. sistem pengangkutan minyak dari sumur bor ke tandon atau tangki penyimpan, sistem distribusi udara pendingin pada suatu gedung, sistem distribusi uap pada proses pengeringan dan lain sebagainya.


Sistem perpipaan meliputi semua komponen dari lokasi awal sampai dengan lokasi tujuan antara lain, saringan (strainer), katup atau kran, sambungan, nosel dan sebagainya. Untuk sistem perpipaan yang fluidanya liquid, umumnya dari lokasi awal fluida, dipasang saringan untuk menyaring kotoran agar tidak menyumbat aliran fuida. Saringan dilengkapi dengan katup searah ( foot valve) yang fungsinya mencegah aliran kembali ke lokasi awal atau tandon. Sedangkan sambungan dapat berupa sambungan penampang tetap, sambungan penampang berubah, belokan (elbow) atau sambungan bentuk T (Tee). 

Perencanaan maupun perhitungan desain sistem perpipaan melibatkan persamaan energi dan perhitungan head loss serta analisa tanpa dimensi yang telah dibahas pada bab sebelumnya. Perhitungan head loss untuk pipa tunggal adalah dengan persamaan Darcy-Weisbach yang mengandalkan Diagram Moody untuk penentuan koefisien geseknya. Untuk keperluan analisa jaringan perpipaan umumnya dipergunakan persamaan Hazen-Williams.


Sistem Pipa Tunggal

Penurunan tekanan (pressure drop) pada sistem pipa tunggal adalah merupakan fungsi dari laju aliran, perubahan ketinggian, dan total head loss. Sedangkan head loss merupakan fungsi dari faktor gesekan, perubahan penampang, dll atau dapat dinyatakan dengan persamaan :

p = f ( L,Q, D, e, z, konfigurasi sistem, , )

Untuk aliran tak mampu mampat, sifat fluida diasumsikan tetap. Pada saat sistem telah ditentukan, maka konfigurasi sistem, kekasaran permukaan pipa, perubahan elevasi dan kekentalan fluida bukan lagi merupakan variabel bebas. Persamaan akan menjadi :

p = f ( L,Q, D)

Empat kasus yang mungkin timbul pada penerapan di lapangan adalah :
1. L, Q, D diketahui, p tidak diketahui
2. p , Q, dan D diketahui, L tidak diketahui
3. p , L dan D diketahui, Q tidak diketahui
4. p , L dan Q diketahui, D tidak diketahui

Penjelasan masing-masing kasus tersebut adalah sebagai berikut :

1. Untuk kasus ini, faktor gesekan f, dapat diperoleh dari diagram Moody ataupun dari persamaan empiris perhitungan f dari Re dan e yang diketahui. Total head loss dihitung dan penurunan tekanan dapat dihitung dari persamaan energi. Kasus ini diilustrasikan pada contoh soal 3.1.

2. Hampir sama dengan kasus 1 maka total head loss dapat dihitung dari persamaan energi, kemudian faktor gesekan diperoleh dari diagram Moody. L yang tidak diketahui dapat dihitung dari persamaan mayor losses. Kasus seperti ini ditampilkan pada contoh soal 3.2 dan 3.3.

3. Karena Q atau V belum diketahui maka faktor gesekan dinyatakan sebagai fungsi V atau Q terlebih dahulu. Kemudian diasumsikan sebuah nilai f yang diambil dari diagram Moody dengan kenyataan bahwa aliran dalam pipa, angka Reynoldnya pasti cukup besar. Dari f asumsi tersebut diperoleh V asumsi yang dipergunakan untuk menghitung angka Reynold asumsi. Dari angka Reynold yang baru ini dicari nilai f yang baru untuk asumsi V yang kedua. Langkah ini diulangi sampai diperoleh nilai yang sesuai. Karena f adalah fungsi yang lemah terhadap angka Reynold maka 2 atau 3 kali iterasi sudah diperoleh nilai V yang hampir benar.

4. Apabila D pipa belum diketahui tentunya diinginkan diameter terkecil yang memungkinkan agar ekonomis. Perhitungan dimulai dengan mengasumsikan nilai D terlebih dahulu. Kemudian angka Reynold dan kekasaran relatif pipa dapat dihitung demikian pula faktor gesekan. Total head loss dihitung dan juga penurunan tekanan, dari persamaan energi. Hasil perhitungan penurunan tekanan ini dibandingkan dengan penurunan tekanan yang disyaratkan. Jika perhitungan pressure drop jauh lebih besar, maka perhitungan diulangi dengan mengasumsikan nilai diameter pipa yang lebih besar atau sebaliknya. Iterasi diulangi sampai ketelitian yang diharapkan.

Metode - metode Pembentukan Logam


Metode pembentukan pada lembaran logam ada beberapa jenis operasi pembentukan seperti terlihat pada (Gambar). Pada industri pengerjaan logam, pengerjaan terutama terbatas pada pekerjaan eksperimental, dimana hanya dibutuhkan jumlah benda sejenis yang terbatas.


Gambar Jenis operasi pembentukan.
Katagori-katagori tersebut adalah:
1. Proses-proses tipe-penekanan-langsung
2. Proses-proses penekanan-tak-langsung
3. Proses-proses tipe-tarik
4. Proses-proses pengguntingan

Pada proses penekanan langsung, gaya dikenakan pada permukaan benda kerja, dan logam bergerak tegak lurus dengan arah tekanan. Contoh utama tipe proses demikian adalah proses tempa dan pengerolan (Lihat Gambar). Proses penekanan tak langsung meliputi penarikan kawat dan penarikan tabung, ekstusi, dan penarikan dalam cawan. Gaya utama yang dikenakan biasanya gaya tarik, tetapi gaya tekan tak langsung yang timbul akibat reaksi antara benda kerja dengan cetakan mencapai nilai yang tinggi. Oleh karena itu, logam mengalir akibat keadaan tegangan kombinasi yang melibatkan gaya-gaya tekan yang tinggi, setidak-tidaknya dalam salah satu tegangan utamanya. Contoh yang paling jelas dalam proses pembentukan jenis-tarik adalah pembentukan rentang, dimana lembaran logam menutupi kontur cetakan dibawah pengaruh gaya tarik. Penekukan mencakup pemakaian momen lengkung terhadap lembaran logam, sedangkan pengguntingan melibatkan gaya geser (gaya gunting) yang cukup besar untuk memotong logam pada bidang geser.

Proses Pembentukan Logam (Metal Forming)



Tujuan utama Proses Manufacturing adalah untuk membuat komponen dengan mempergunakan material tertentu yang memenuhi persyaratan bentuk dan ukuran, serta struktur yang mampu melayani kondisi lingkungan tertentu.

Melihat faktor-faktor diatas maka faktor membuat suatu bentuk tertentu merupakan faktor utama. Ada beberapa metoda atau membuat geometri (bentuk dan ukuran) dari suatu bahan yang dikelompokan menjadi enam kelompok dasar proses pembuatan ( manufacturing proces) yaitu : proses pengecoran ( casting), proses pemesinan (machining), proses pembentukan logam (metal forming), proses pengelasan (welding), perlakuan panas (heat treatment), dan proses perlakuan untuk mengubah sifat karakteristik logam pada bagian permukaan logam (surface treatment).

1. Proses pengecoran (casting)
Suatu teknik pembuatan produk dimana logam dicairkan dalam tungku peleburan kemudian dituangkan kedalam rongga cetakan yang serupa dengan bentuk asli dari produk cor yang akan dibuat.

2. Proses pemesinan (machining)
Proses pemotongan logam disebut sebagai proses pemesinan adalah proses pembuatan dengan cara membuang material yang tidak diinginkan pada benda kerja sehingga diperoleh produk akhir dengan bentuk, ukuran, dan surface finish yang diinginkan.
3. Proses pembentukan logam (metal forming)

Proses metal forming adalah melakukan perubahan bentuk pada benda kerja dengan cara memberikan gaya luar sehingga terjadi deformasi plastis.
4. Proses pengelasan (welding)
Proses penyambungan dua bagian logam dengan jalan pencairan sebagian dari daerah yang akan disambung. Adanya pencairan dan pembekuan didaerah tersebut akan menyebabkan terjadinya ikatan sambungan.
5. Proses perlakuan panas (heat treatment)
Heat treatment adalah proses untuk meningkatkan kekuatan material dengan cara perlakuan panas.
6. Surface treatment

Proses surface treatment adalah proses perlakuan yang diterapkan untuk mengubah sifat karakteristik logam pada bagian permukaan logam dengan cara proses thermokimia, metal spraying.

Proses pemesinan atau lebih spesifik lagi proses pembuangan material (material removal proces), memberikan ketelitian yang sangat tinggi dan fleksibilitas (keluwesan) yang besar. Namun demikian proses ini cenderung menghasilkan sampah dari proses pembuangan material tersebut secara sia-sia.

Proses deformasi memanfaatkan sifat beberapa material ( biasanya logam ) yaitu kemampuannya “mengalir secara plastis “ pada keadaan padat tanpa merusak sifat-sifatnya. Dengan menggerakkan material secara sederhana ke bentuk yang kita inginkan ( sebagai lawan dari membuang bagian yang tidak diperlukan ), maka sedikit atau bahkan tidak ada material yang terbuang sia-sia.
Namun demikian biasanya gaya yang diperlukan cukup tinggi. Di samping itu, mesin-mesin dan perkakas yang diperlukan harganya mahal sehingga jumlah produksi yang besar merupakan alasan pokok untuk membenarkan pemilihan proses ini.
Kegunaan material logam dalam masyarakat modern ditentukan oleh mudah tidaknya material tersebut dibentuk (forming) kedalam bentuk yang bermanfaat. Hampir semua logam mengalami deformasi sampai pada tingkat tertentu selama proses pembuatannya menjadi produk akhir.
Ingat dalam proses pengecoran, strand dan slabs direduksi ukurannya dan diubah ke dalam bentuk-bentuk dasar seperti plates, sheet, dan rod. Bentuk-bentuk dasar ini kemudian mengalami proses deformasi lebih lanjut sehingga diperoleh kawat (wire) dan myriad ( berjenis – jenis) produk akhir yang dihasilkan melalui tempa (forging), ekstrusi, sheet metal forming dan sebagainya.
Deformasi yang diberikan dapat berupa aliran curah (bulk flow) dalam 3 dimensi, geser sederhana (simple shearing), tekuk sederhana atau gabungan (simple or compound bending) atau kombinasi dari beberapa jenis proses tersebut.
Tegangan yang diperlukan untuk mendapatkan deformasi tersebut dapat berupa tarikan (tension), tekan (compression), geseran (shear) atau kombinasi dari beberapa jenis tegangan tersebut. Kecepatan, temperature, toleransi, surface finish.
Kemampuan untuk menghasilkan berbagai bentuk dari lembaran logam datar dengan laju produksi yang tinggi merupakan merupakan kemajuan teknologi yang nyata. Peralihan dari proses pembentukan dengan tangan ke metode produksi besar – besaran menjadi faktor penting dalam meningkatan standar kehidupan selama periode tersebut.

Pada dasarnya, suatu bentuk dihasilkan dari bahan lembaran datar dengan cara peregangan dan penyusutan dimensi elemen volume pada tiga arah utama yang tegak lurus sesamanya. Bentuk yang diperoleh merupakan hasil penggabungan dari penyusutan dan peregangan lokal elemen volume tersebut. Usaha telah dilakukan untuk menggolongkan berbagai macam bentuk yang mungkin pada pembentukan logam menjadi beberapa kelompok tertentu, tergantung pada kontur produk – produk. Sachs membagi komponen – komponen lembaran logam menjadi 5 katagori.

1. Komponen lengkungan tunggal.
2. Komponen flens yang diberi kontur- termasuk komponen dengan flens rentang dan flens susut.
3. Bagian lengkung
4. Komponen ceruk dalam – termasuk cawan, kotak – kotak dengan dinding tegak atau miring
5. komponen ceruk dangkal – termasuk bentuk pinggan, galur (beaded), bentuk – bentuk timbul dan bentuk – bentuk berkerut.

Cara lain untuk menggolongkan proses pembentukan lembaran logam adalah dengan menggunakan operasi khusus seperti pelengkungan, pengguntingan, penarikan dalam, perentangan, pelurusan.

Perlu dicatat berbeda dengan proses deformasi pembentukan benda secara keseluruhan, pembentukan lembaran biasanya dilakukan dalam bidang lembaran itu sendiri oleh tegangan tarik. Gaya tekan pada bidang lembaran hendaknya dihindari karena ini akan menyebabkan terjadinya pelengkungan, pelipatan dan keriput pada lembaran tadi. Pada proses pembentukan lembaran, susut tebal hendaknya dihindarkan karena dapat terjadi penciutan dan akan kegagalan mengakibatkan kegagalan dalam proses pembuatan produk.

Proses pemesinan atau lebih spesifik lagi material removal process (proses pembuangan material), memberikan ketelitian yang sangat tinggi dan fleksibilitas (keuletan) yang besar.
Proses konsolidasi mampu membentuk benda yang kompleks dari komponen-komponen yang sederhana dan merupakan proses yang sangat umum dipakai.
Proses deformasi memanfaatkan sifat beberapa material yaitu kemampuannya mengalir secara plastis pada keadaan padat tanpa merusak sifat-sifatnya. Dengan manggerakan material secara sederhana ke bentuk yang di inginkan, maka sedikit atau bahkan tidak ada material yang terbuang sia-sia.
Dari proses pengecoran, stranda dan slabs direduksi ukurannya dan diubah kedalam bentuk-bentuk dasar seperti plates, sheets dan rod. Bentuk-bentuk dasar ini kemudian mengalami proses deformasi lebih lanjut sehingga diperoleh kawat (wire) dan myriad (berjenis-jenis) produk akhir yang dihasilkan melalui tempa (forging), ekstrusi, sheet metal forming dan sebagainya.
Deformasi yang diberikan dapat berupa aliran curah (bulk flow) dalam 3 dimensi. Geser sederhana , tekuk sederhana dan gabungan ataupun kombinasi dari beberapa jenis proses tersebut. Tegangan yang diperlukan untuk mendapatkan deformasi tersebut dapat berupa tarikan (tension), tekan (compression), geseran (shear) atau kombinasi dari beberapa jenis tegangan tersebut.


Pengertian deformasi elastis dan deformasi plastis


Secara makroskopis, deformasi dapat dilihat sebagai perubahan bentuk dan ukuran. Perubahan bentuk yang terjadi dapat di bedakan atas deformasi elastis dan deformasi plastis.


Meskipun hakekat proses pembentukan logam adalah mengusahkan deformasi plastis yang terkontrol, namun dalam berbagai hal pengaruh deformasi elastis cukup besar sehingga tidak dapat diabaikan begitu saja. Untuk itu perlu dibahas lebih dahulu pengertian deformasi elastis dan deformasi plastis.
Perubahan bentuk dapat dipisahkan menjadi dua, yaitu deformasi elastis dan defomasi plastis. Deformasi elastis adalah perubahan bentuk yang terjadi bila ada gaya yang berkerja, serta akan hilang bila beban ditiadakan. Dengan kata lain bila beban ditiadakan, maka benda akan kembali kebentuk dan ukuran semula. Di lain pihak, defomasi plastis adalah perubahan bentuk yang permanent, meskipun bebannya di hilangkan. Secara diagramatis menunjukan pengertian deformasi elastis dan deformasi plastis pada suatu diagram tegangan-regangan.
Bila suatu material dibebani sampai daerah plastis, maka perubahan betuk yang saat itu terjadi adalah gabungan antara deformasi elastis dengan deformasi plastis (penjumlahan ini sering juga disedut deformasi total). Bila beban-beban ditiadakan, maka deformasi elastis akan hilang pula, sehinga perubahaan bentuk yang ada hanyalah deformasi plastis saja.

Klasifikasi berdasarkan temperatur pengerjaan


Pengaruh temperatur terhadap proses-proses pembentukan adalah hal mengubah sifat-sifat dan prilaku material. Secara umum kenaikan temperatur akan mengakibatkan turunnya kekuatan material, naiknya keuletan dan turunnya laju pengerasan regangan yang mana perubahannya tersebut mengakibatkan kemudahan material untuk deformasi.
Berdasarkan temperatur material pada saat deformasi ini, proses pembentuka logam dapat diklasifikasikan menjadi dua kelompok besar, yaitu:
1. Pengerjaan panas (Hot working)
2. Pengerjaan dingin (Cold working)
Pada awalnya batasan kedua kelompok tersebut hanyalah didasarkan atas ada atau tidaknya proses pemanasan benda kerja. Namun bila ditinjau dari segi metalurgis, hal ini tidak sepenuhnya benar.
Batasan yang berlaku lebih umum adalah yang didasarkan pada temperatur rekristalisasi logam yang diproses. Hal ini memang berkaitan dengan ada atau tidaknya proses pelunakan selama proses berlangsung.

Proses pengerjaan panas


Pengerjaan panas adalah proses pembentukan logam yang mana proses deformasinya dilakukan dibawah kondisi temperatur dan laju regangan dimana proses rekritalisasi dan deformasi terjadi bersamaan.
Proses pengerjaan panas dapat didefinisikan sebagai proses pembentukan yang dilakukan pada daerah temperatur rekristalisasi logam yang diproses. (agar lebih singkat daerah tamperatur diatas temperatur rekristalisasi untuk selanjutnya disebut sebagai daerah temperatur tinggi). Dalam proses deformasi pada temperatur tinggi terjadi peritiwa pelunakan yang terus menerus, khususnya akibat terjadinya rekristalisasi. Akibat yang konkret ialah bahwa logam bersifat lunak pada temperatur tinggi. Kenyataan inilah yang membawa keuntungan-keuntungan pada proses pengerjaan panas. Yaitu bahwa deformasi yang diberikan kepada benda kerja dapat relative besar. Hal ini disebabkan karena sifat lunak dan sifat ulet, sehingga gaya pembentukan yang dibutuhkan relative kecil, serta benda kerja mampu menerima perubahaan bentuk yang besar tanpa retak. Karena itulah keuntungan proses pengerjaan panas biasanya digunakan pada proses-proses pembentukan primer yang dapat memberikan deformasi yang besar, misalnya: proses pengerolan panas, tempa dan ekstrusi.


Akibatnya adalah kurva tegangan – regangan sebenarnya secara garis besar berupa garis mendatar pada regangan diatas titik luluh. Hal ini merupakan perbadaan yang jelas apabila perbandingan dengan kurva tegangan – regangan sebenarnya yang naik keatas pada deformasi dibawah temperatur rekristalisasi. Dengan demikian proses pengerjaan panas secara drastis mampu mengubah bentuk material tanpa akan timbulnya retak pembentukan yang berlebihan.


Disamping itu, temperatur tinggi memacu proses difusi sehingga hal ini dapat menghilangkan ketidak homogenan kimiawi, pori-pori karena efek pengelasan dapat tertutup atau ukurannya berkurang selama derformasi berlangsung serta struktur metalurgi dapat diubah sehingga diperoleh sifat-sifat akhir yang lebih baik. Dilihat dari segi negatif, temperatur tinggi dapat mengakibatkan reaksi yang tidak dikehendaki antara benda kerja dengan lingkungannya.


Toleransi menjadi rendah sebagai akibat adanya penyusutan /pemuaian thermal ataupun akibat pendinginan yang tidak seragam. Secara metalurgis dapat terjadi sehingga ukuran butir produk akan bervariasi tergantung pada basar reduksi yang alami, temperatur deformasi yang terakhir, setelah doformasi dan faktor-faktor lainnya.


Keberhasilan dan kegagalan proses pengerjaan panas sering sangat tergantung pada keberhasilan mengatur kondisi termal, karena hampir 90% energi yang diberikan kepada benda kerja akan diubah menjadi panas maka temperatur benda kerja akan naik jika deformasi berlangsung sangat cepat. Meskipun demikian, pada umumnya pemanasan benda kerja dipanaskan pada temperature yang lebih rendah.


Panas banda kerja hilang melalui permukaan-permukaannya dan panas paling besar melalui permukaan yang bersentuhan dengan dies yang bertemperatur lebih rendah begitu permukaan benda kerja menjadi dingin ketidak seragaman temperatur akan terjadi. Adanya aliran benda kerja yang panas dan lunak pada bagian dalam akan mengakibatkan retakan pada permukaan benda kerja yang dinging dan getas. Oleh kerena itu temperatur benda kerja perlu dijaga agar kesseragam mungkin.


Guna mendapatkan toleransi produk yang lebih baik maka temperatur dies dinaikan dan waktu kontak yang lebih lama (kecepatan deformasi yang lebih rendah). Namun dengan cara seperti ini juga akan semakin memperpendek umur dies. Pada saat memproses forming produk yamg bentuknya rumit, seperti pada hot forging, bagian tipis akan mendingin lebih cepat dari pada bagian yang tebal sehingga hal ini akan semakin memperumit perilaku aliran benda kerja. Lebih jauh lagi ketidak seragaman pendinginan benda karja akan menimbulkan tegangan sisa pada produk akhir hasil proses hot working


Proses pengerjaan dingin


Proses pengrjaan dingin didefinisikan sebagai proses pambantukan yang dilakukan pada daerah temperatur dibawah temperatur rekristalisasi. Dalam praktek memang pada umumnya pangerjaan dingin dilakukan pada temperatur kamar, atau dengan lain perkataan tanpa pemanasan benda kerja.


Agar lebih singkat, untuk selanjutnya daerah temperatur dibawah temperature rekristalisasi disebut saja sebagai daerah temperatur rendah. Pada kondisi ini pada logam yang diderformasi terjadi peristiwa pengrasan regangan. Logam akan bersifat makin keras dan makin kuat tetapi makin getas bila mengalami deformasi. Hal ini menyebabkan relatif kecil deformasi yang dapat diberikan pada proses pengerjaan dingin. Bila dipaksakan adanya suatu perubahan bentuk yang besar, maka benda kerja akan retak akibat sifat getasnya.
Meskipun demikian, proses pengerjaan dingin tetap menempati kedudukan yang khas, dalam rangkaian proses pengerjaan. Langakah deformasi yang awal biasanya adalah pada temperature tinggi, misalnya proses pengerolan panas. Billet ataupun slab di rol panas menjadi bentuk yang lebih tipis, misalnya pelat. Pada tahapan tersebut deformasi yang dapat diberikan adalah relatif besar. Namun proses pengerolan panas ini tidak dapat dilanjukan pada pelat yang relative lebih tipis. Memang mungkin saja suatu gulungan pelat dipanaskan terlebih dahulu pada tungku sampai temperaturnya melewati temperatur rekristalisasi. Akan tetapi bila pelat tersebut dirol, maka temperaturnya akan cepat turun sampai dibawah temperatur rekristalisasi. Hal ini disebabkan oleh besarnya panas yang berpindah dari pelat ke sekitarnya. Pelat yang tipis akan lebih cepat mengalami penurunan temperatur dari pada pelat yang tebal.
Dari uraian tersebut jelaslah behwa proses deformasi yang dapat dilakukan pada benda kerja yang luas permukaan spesifiknya besar hanyalah proses pengerjaan dingin. Beberapa contohnya adalah proses pembuatan pelat tipis dengan pengerolan dingin, proses pembuatan kawat dengan proses panarikan (wire drawing), serta seluruh proses pembentukan terhadap pelat (sheet metal forming).
Keunggulan proses pengerjaan dingin adalah kondisi permukaan benda kerja yang lebih baik dari pada yang diproses dengan pengerjaan panas. Hal ini disebabkan oleh tidak adanya proses pemanasan yang dapat menimbulkan kerak pada permukaan.
Keunggulan lainya ialah kekerasa dan kekuatan logam sebagai akibat pengerjaan dingin. Namun hal ini diikuti pula oleh suatu kerugian, yaitu makin getasnya logam yang dideformasi dingin.
Sifat-sifat logam dapat diubah dengan proses perlakuan panas (heat treatment). Perubahan sifat menjadi keras dan getas akibat deformasi dapat dilunakan dan diuletkan kembali dengan proses anil (annealing).
Ditinjau dari segi proses pembuatan (manufacturing), proses pengerjaan dingin mempunyai sejumlah kelebihan yang jelas sehingga bebagai Jenis proses pengerjaan dingin menjadi sangat penting dalam kehidupan sehari-hari. Apabila dibandingkan dengan proses pengerjaan panas maka proses pengerjaan dingin mempunyai beberapa keuntungan, yaitu:

Tidak perlu pemanasan
Permukaan akhir lebih baik
Pengaturan dimensi lebih bisa terkendali, sehingga walaupun ada sangat sedikit sekali proses pemesinan lanjut
Produk yang dihasilkan mempunyai reproducibility (mammpu diproduksi kembali dengan kualitas yang sama) interchangeability (mampu tukar) yang lebih baik
Kekuatan, kekuatan lelah (fatigue strength) dan ketahanan ausnya lebih baik
Sifat-sifat terarah (directional properties) dapat dimunculkan
Masalah kotaminasi dapat dikurangi


Adapun kerugianya adalah

Diperlukan gaya yang besar untuk melakukan deformasi
Perlu peralatan yang berat dan berdaya besar
Produk menjadi kurang ulet
logam harus bersih dan bebas kerak
Terjadi pengeras regangan (strain hardening) sehingga perlu poses pelunakan (annealing) antara proses bila digunakan proses deformasi
Rusaknya directional properties
Timbulnya tegangan sisa


Dari fakta-fakta diatas seperti yang telah dipaparkan diatas. Terlihat bahwa proses pengerjaan dingin khusus cocok untuk produksi dalam jumlah yang banyak, dimana kuantitas produk dapat mengimbangi ongkos peralatan yang mahal.


Cocok tidaknya logam diproses pambentukan dingin ditentukan olah sifat-sifat tariknya yang mana hal ini langsung berkaitan dengan struktur metalurginya. Dengan penjelasan yang sama maka proses pengerjaan dingin akan mengubah sifat material pada produk yang dihasilkan. Defomasi plastis pada suatu logam hanya dapat terjadi jika batas elastis logam dilewati.


Proses pengerjaan hangat (Warm Forming)


Proses pengerjaan hangat merupakan proses pembentukan logam dimana temperatur deformasinya terletak diantara temparatur proses pengerjaan panas dan pengerjaan dingin. Apabila dibandingkan dengan proses pengerjaan dingin, proses pengerjaan hangat menawarkan beberapa keuntungan, yaitu turunya gaya pada perkakas dan peralatan, menaikan keuletan material serta dapat menurunkan jumlah proses pelunakan (annealing) karena turunnya efek pengerasan regangan. Proses pengerjaan hangat memperluas kemungkinan penggunaan proses forming untuk bebagai jenis material dan berbagai bentuk dan ukuran.


Apabila dibandingkan dengan proses pengerjaan panas, maka pengerjaan hangat melakukan sedikit lebih energi (enargi untuk pelumasan benda kerja), metalurgi pembentukan kerak (scaling) dan dekarburisasi, memberikan ketelitian, pengaturan deminsi dan surface finish yang lebih baik. Umur pahat menjadi lebih panjang, meskipun gaya pembentukan 25÷60% lebih besar, kejutan thermal dan fatigue termal yang lebih kecil.


Meskipun demikian pengerjaan hangat masih merupakan bidang yang sedang dan terus berkambang, meskipun ada beberapa kendala yang menghambat pertumbuhannya, kendala-kendala tersebut antara lain adalah perilaku material belum ter karakteristik dengan baik pada kondisi temperatur pengerjaan hangat, pelumasan belum sepenuhnya dikembangkan untuk kondisi temperatur dan tekanan operasi working dan teknologi perancangan dies untuk pengerjaan hangat belum begitu mapan. Namun demikian dorongan akan perlunya penghematan energi dan keuntungan-keuntungan lain yang ditawarkan oleh proses ini sangat mendorong pengembangan lebih lanjut.
 
Copyright © 2012 - 2015 Renviletieft Blog - All Rights Reserved
Template Craeted by : RenvileTieft Blog
Proudly Powered by Blogger